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ABSTRACT

1

..

Independent Component Analysis (lCA) is a recent statistical technique developed in the early 1990's (Jutten et
al. (1991), Cardoso (1994), Amari (1997), Hyvarinen (2000) ) to deal with the problem of separating the
independent components of a mixed signal. It has been recognized that the ,asymptotic behavior of an algorithm
for ICA has to depend on the unknown probabilitydensity functions of each source. Efficient algorithms exist
for fast estimation of an unknown density function and each algorithm' requires the computation of score
functions of the unknown sources. In such existing ICA algorithms, approximate models of the score functions
are used based on moment expressions e.g. kurtosis, which are prone to outliers i.e. non-robust. This paper
examinesalternativerobust proceduresfor approximating the score functions for ICA applications.

. KEYWORDS AND PHRASES: independent component analysis, blind source separation, score function,
robust methods, influencefunctions

1. INTRODUCTION

The simplest and often-used illustration for the blind source separation problem is the
cocktail party illustration. Two microphones are placed at different distances from two
speakers A and B. A listener observes and records the signals from the microphone A' and
B'. Given A' and B', the problem is to recover the original signals A and B.

We note the observed signals A' and B' are each mixtures of the original signals A
and B. Mathematically, let S be a vector (s xl) of original signals, let A be an s x s matrix
called a mixing matrix and let X be an s x 1 vector of observed signals. Then:

X=AS (1)

The signal S and matrix A are both unknown. The blind source separation problem is
to estimate the demixing matrix W:

so that

W=A'\

S=WX

(2)

(3)

The matrix A can also be generalized to an m x s matrix where m '* s. Section 2
surveys the techniques employed in the literature (since 1995) for solving this blind source
separation problem.
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A major issue in all independent component analysis (lCA) applications is the issue
on the robustness of the criteria used to estimate the original source signals. Existing ICA
algorithms approximate these criteria based on moment expressions, such as the kurtosis,
which are prone to outliers. It has been demonstrated in several studies in the past (Huber,
1981) that outliers can distort the values of estimators as well as their distributions. This
paper aims to propose a method for enhancing the insensitivity of moment expressions to
outliers by the use of trimming techniques.

While independent component analysis was originally developed to deal with
problems allied to the cocktail party problem, it is apparent that it has many other
applications. ICA, for instance, was successfully applied to the problem of finding hidden
factors in financial data ( Oja (1998) ); to noise reduction in natural images ( Bell and
Sejnowski (1997) ); and to the problem of reproducing brain activity from electrical
recordings of electroencephalograms (EEG) (Gonzales and Wintz (1997) ).

This paper is organized as follows: Section 2 is a survey of existing ICA techniques;
Section 3 proposes a class of robust estimators for kurtosis and negentropy measures; Section
4 provides the experimental results using the robust estimators proposed, and Section 5 gives
the conclusions and recommendations.

2. SURVEY OF EXISTING ICA TECHNIQUES

Assume that we have n linear combinations xl, x2 ,.... x n of n independent

components sl ,s2 ,.... s n

•

(4)

We assume that the Si'S have zero mean (and, thus, also the x). Equation (4) can be

written in vector-matrix form as equation (2). Denote the jth column of A by aj, then the

model can be written as :

n

X =~>jSj
j=l

(5)

In ICA, the components si's are assumed to be statistically independent. Further, the

distribution ofsi's are assumed to be non-Gaussian in order to ensure estimability of A.

The basic premise to the framework of ICA is the concept of non-Gaussianity.
According to the Central Limit Theorem, the sum of properly normalized independent
random variables has a distribution that is closer to a normal distribution than the individual
summands. Thus, the sum of the independent variables has a distribution closer to a normal
distribution than anyone of the two variables. This simple observation leads to the general
approaches currently being used in ICA. Let

y =w Tx =L w jXj

j

(6)

...
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Equations(6) and (7) leads to:

(7)

(8)

3

•

It follows that y, which is a linear combination of the unknown independent signals s.
Since a sum of two or more independent variables is more Gaussian than any of its
components, it follows that y is more Gaussian than any of the si'S.

Essentially, therefore, the problem reduces to finding an appropriate measure of non
Gaussianity and then maximizing this measure. The classical measure of non-Gaussianity is
kurtosis or the fourth-order cumulantdefined by:

(9)

If we assume that y has been normalized so that it has a unit variance; Equation (9)

simplifies to : kurt(y) = E(y4) - 3. For a normal random variable, kutt(y) = 0 but for most
(although not all) non-Gaussian random variables, kurt(y) O. Since the kurtosis of a
randomvariablecan be positiveor negative, the typical measure of non-Gaussianity is :

..'

NEG =Ikurt(y)I

The leA procedurenow consists of maximizing NEG.

Example: Let S = 2 so that;

xI = allsl + a12s2

x2 =a21s1 +a22s2

Weseek sl and s2 which maximizes:

Ikurt(y)I=IZl4 kurus.) +Z24 kurt(S2)1

subjectto: var(y) =z?var(sl)+z/var(s2)
These equationscan be simplified furtherby noting that

(10)

so that:

subject to

var (sl) = var (s2) = 1

MaxIkurt(y)I=1 zI4kurt(SI) + Z24kurt(S2) I
2 2zl + z2 =1

•

It is easy to show that the solutions are { (1,0), (-1,0), (0,1), (0,-1) }.which
corresponds to the fact that the solutionspick out one of the components sl or s2.
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,
(10)

A non-Gaussianity measure which is more justified in statistical theory is negentropy
or negative entropy. Let H(y) be the entropy of a random variable y, then:

H(y) =- ff(y) log fey)dy, if y is continous

=-L P(Y =a.) log P(y =a.), if y is discrete.

The more unpredictable the random variable is, the larger is its entropy. The Gaussian
variable has the largest entropy among all random variables of equal variance. Thus, a non
Gaussianity measure that is zero for Gaussian random variable and always non-negative is:

where H(ygaussian) denotes the entropy of a Gaussian random variable. Estimating

negentropy using (11) would require an estimate of the pdf of y. It will be more expedient to
find approximations to J(y) than to find, possibly, non-parametric estimates of f(y).One such
estimate is given by:

J(y) == H(ygaussian) - H(y)

J(y) == _1E(y3)2 +_1 kurt(y)2
12 48

(11)

(12)

'.

Equation (12) suffers for the same non-robustness properties inherent with kurtosis.

A class of estimators proposed by Hyvarinen (1998) based on the maximum-entropy
principle is given by:

P
J(y)==Lki {E(Gi(y))-E(Gi(v))f (13)

i=1
where ki's are constants, v is a normalized Gaussian variable and the functions Gi's are non-

quadratic functions.

Equation (13) can be used to construct a measure of non-gaussianity that: a) is zero
for a Gaussian random variable and (b) always non-negative. In particular, more robust
estimates can be obtained by using:

1
G\ (u) =-log cosh a.u

a\

G2(u) =-exp (- ul{)
or

(14)

where 1s a \ s 2. If G( y) =Y4 is used, then we are led back to the kurtosis-based contrast

function.

•
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3.A CLASS OF ROBUST ESTIMATORS FOR ICA

5

We propose to investigate the properties of two "robustified" versions of the kurtosis
and negentropy measures in this section. The robustified versions are:

kurt(y)

and

(15)

• J(y)~ [
-I ]21 1 F. (1-~) 1

= - -- J (y3)dF(Y) +-kurt(y)~2
12 (1-2P 1 48

F- (~)

(16)

which correspond to trimming lOO%x 2P extreme observations: and then averaging the
respective 3rd or 4th powers of the remaining observations. The sample counterparts of (15
and (16) are:

kurt(y)

and

J(y)~

= [_1 YNt-~](l)] _3
1- 2P y=Y[N~]

The influence function of the functional in Equation (15) is given by: (see Appendix
for derivation)

(1- 2p)IFr
2P

(y) = y;4
ro2~(F) Y<Y~~

= y 4
ro2~(F) y~, SYS Yl-~

4
Yl-~ <Y= Yl-~ - ro2~(F)

where : ro2~(F) = (l-2p)T2~(F)+ py~4 + PYl_~4

y~ = pth quantile of y•
Yl-~ = (1- Pyh quantile of y

Y1- p

and T2~(F) = _1_ f~4)dF(y)
1- 2P

Yp

.'
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The influence function of equation (16) will have the same form as (17) except that
the middle part will have contributions due to the trimmed third moment. The influence
function shows that the estimators will remain bounded (robust) and in fact,

~ (T2P(Fn ) - T2p(F) )~ N (0, V) where

V =E( IF~,F(X) ) (Stiegler, 1969)

This result also shows that Estimators (15) and (16) are strongly consistent (converges in

probability to T2P and to J(y)p.).

In the case of a location parameter, it is known that the trimmed mean has a

breakdown point of G *=f3 . Since the original observations, in the present application are

ordered and are the basis for the computation of the trimmed kurtosis and trimmed
negentropy measures, it follows that both statistical measures will inherit the same
breakdown point. Thus, these induced estimators will be insensitive to outliers provided that
no more than IOO~% are on either side of the sample.

Apart from robustness considerations, these induced estimators will also display
strong nonparametric efficiency property, namely, their asymptotic efficiency relative to their
untrimmed counterparts never drops below (1-2~l (Staudte, p.l OS, 1990).

Instead of fixing the trimming proportion ~ ab initio, one can also use an adoptive

trimming procedure as follows: From an observed data set calculate the sample median (x)

and a measure of dispersion, say the average median absolute deviation (MAD). Form the

interval (; ±2MAD J. Trim off all observations falling ontside the interval. Such trimming

procedures had been extensively studied in Tukey's (1972) Princeton Robustness study.

4. EXPERIMENTAL RESULTS

We mixed the original signals utilizing the mixing matrix A below:

•

A =

- 0.3210

1.2366

- 0.6313

- 2.3532

-1.2316

1.0556

- 0.1132

0.3792

0.9442

-2.1204

- 0.6447

- 0.7043

-1.0181

- 0.1824

1.5210

- 0.0384 •
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4.1 Source Signal Generation

7

...

•

..

The source signals were generated utilizing the hyperbolic sine function. Specifically,
to generate super-Gaussian signals, we take the hyperbolic sine of .normally-distributed
random numbers. To generate sub-Gaussian signals, we take the inverse-hyperbolic sine of
these random numbers.

We generated a total of n=300 source signals. In this data set, we contaminated the
true source signals by signals coming from the Cauchy distribution. About 10% of the source
signals come from the Cauchy distribution. The algorithm for doing so is given below:

Algorithm:

(1.) Generate u from N(O,I).
(2.) For super-Gaussian signals, take the hyperbolic sine ofu.

For sub-Gaussian signals, take the inverse hyperbolic sine of u
(3.) Repeat (1) and (2) for n=270 times.
(4.) Generate Cauchy-distributed signals 30 times (10% of size 300).
(5.) Randomly put it to the original source signals (now total sample size is 300)

4.2 Mixing

Let (S1 (t),s2(t),s3 (t),S4 (t))=S(t) be the source signals generated from (4.1), we

obtained our observed signals by performing the following matrix multiplication:

X(t)=AS(t) .

Thus, we also generated 300 observed signals and are pre-whitened in the succeeding
steps.

The data are pre-whitened as follows:

4.3 Pre-Whitening

1. Trimming. We arranged the data from lowest to highest and trimmed off the 5% lowest
and 5% highest observations. The remaining observations will be subjected to further
treatment.

2. Centering the data. We subtracted the mean m=E(x) from each of the data points so as to

make a zero-mean variable. Let x = x - m .
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,
3. Whitening. We made the covariance matrix of the new standardized variables equal to I,

i.e. E( ;; T ) =I. Let E ( x x TJ~S. By the eigenvalue decomposition procedure, we

obtain:

S=PDpT

where P is an orthogonal matrix of eigenvector of Sand D=diag(A.). ...,A.n ) . Let

I

X=PD-"2pTX' .

The fast ICA algorithm of Hyvarinen (2000) is used for actual processing of the whitened
data set. For the estimation of one independent component,the algorithm is given as follows:

(a.) Choose an initial (e.g. random) weight vector w.

(b.)Let wT =E(xg(wTx))- E(g'(W Tx)w).

w+
(c.) Let w new =~.

(d.)If Wold • w new :::::: I stop. Else go to (b).

To estimate several independent components, we need to run the one-unit fast ICA algorithm
using several units with weight vectors wI> W2, ..., wn . We decorrelate the outputs

w?x, w2Tx, ..., WnTx by the Gram-Schmidt process after each iteration. Specifically, let

wp be the output vector in the pth iteration, then:

p

(a.) Let w p+l ~wp+l - L wp+?WjWj.

j=l

A MATLAB implementation of the fast ICA algorithm is utilized from the World Wide
Web.2

2 ·WWW address: http://www.cis.hut.fi/projects/ica/fastica/

•

•
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4.4 Performance Criterion

9

The performance criterion used in this study is error measure proposed by Amari et.
al. (1996).

where Pij is the (i, j) element of the global matrix P =WA. P is close to a permutation of
the scaled identity matrix . A value of zero indicates perfect match between the found
solution and the sources. The greater the value of the above measure, the poorer the
performance.

..-

E = +

•

4.5 Results

Fig. I shows the hypothetical observed (and pre-whitened) signals. Note that the
sample size have been reduced to 270 sample size, as a result.from trimming done in 4.3.
These signals were fed to the FastICA program.

Fig. la is the product of the first column of the mixing matrix A and the first row of
the source matrix S (the 1st original signal). Fig. 1b is the product of the second column of
the mixing matrix A and the second row of the source signal matrix (the 2nd original signal).
The remaining figures (l c and l d) are the products of the remaining 3rd and 4th column of A
and the corresponding 3rd and 4th rows of the source matrix S.:

Fig. 2 shows the output form FastICA. We note that the performance index in this
experiment is zero. This means that the global matrix G=AW is a permutation matrix, and so

y = wx = (WA) S = I S =S,

which shows perfect separation.
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FIGURE 1 FIGURE 2
, (The original signals) (The recoveredsignals)

'.

.,

..

...
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Appendix 1. Derivation of the Influence Function of the Trimmed Kurtosis

The derivation presented here applies equally well to trimmed moment estimates of
the moments of our unknown probability distribution. Let F be the unknown probability
distribution of a random variable x. Let:

=

=

We derive the influence function of a one-sided trimmed estimator. Let

where 0 < E <1 and ~x (.) is the probability distribution that puts a mass of one (1) at x. Let:

geE) =

=
1

1- f3

1

1- f3

FX,E-1 (l-~)

e J(y4 )d (lI x - F)(y)

o
•

The derivative with respect to E of this quantity is:

g'(s) =

•
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The influence function IFrA F(x) = lim g'(s) so:
1', E~O

Substituting the influence function of the (1_I3)th quantile yields:

13

...-

•

Q

•

IFr~,F(X) =
XI_~ <x
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Appendix 2 Asymptotic Normality Derivation

Let G =L\x - F represents a distribution close to F (in the sense of the supremum

distance). Expand the functional T(F) in an Edgeworth-like expression as:

T(G) =T(F) + JIFr,F(X)d(G - F)(x) + R (a)

where R is a remainder term. Consider now the sample counterpart of Equation (a):

T(F,,)=T(F) + JIFr,F(X)d(F" -F)(x)+RN

where we assume that nIl 2R N~O in probability. Thus,

or

. n

~[(T(FN»)-T(F)] ~ );;L IFr,F(Xj)

i=1

(b)

(c)

The right-hand side of © is a sum of iid random variables for which the Central Limit
Theorem, so: .

where:

(~[(T(FN»)- T(F)])~ N (0, V) (d)

The result of the trimmed-kurtosis can now be easily applied to Equation (d).

•

...


